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Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and
link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and
Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT,
because they are widely used and give a great amount of complementary information. We show the relationship between these
three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-
MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and
DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although
18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion,
and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC
in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density
study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets.

1. Introduction

Radiotherapy is in a process of transformation from image-
guided radiotherapy to biologically guided radiotherapy [1].
To this effect, in the last few years some commercial treat-
ment units have been developed that include an MRI unit
combined with a linac in a single device [2-5], and PET/CT
(positron emission tomography/computed tomography) has
proven useful for tumour staging and target delineation,
especially in head and neck tumours and lung tumour [6-
8]. The main change in clinical practice will arrive when the
prescription of a treatment moves from dose prescribed to

target volumes and to prescription of results of a function, as
tumour control probability, which considers all the radiobio-
logical phenomena and adapts the treatment to early tumour
response and uses different functional images as inputs.
Although not widely available yet, several tools, methods, and
models have been developed for achieving these objectives in
a retrospective manner:

(1) quantitative methods in diffusion-weighted imaging-
(DW-) MRI providing ADC (apparent diffusion coef-
ficient) maps that allow determining early tumour
response [9-13],
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(2) in vivo measurement of hypoxia [14, 15], using either
MRI datasets [16-22] or PET/CT [23-28],

(3) inverse-planning optimisation algorithm that includes
biological criteria [29, 30] and/or functional imaging
information [31, 32] or even radiobiological models
adapted to functional imaging information [33].

In this paper a case study is presented using datasets from
18F-FDG (fludeoxyglucose labelled with 18F) PET/CT, DW-
MRI/ADC maps, and dynamic contrast-enhanced- (DCE-)
MRI for characterizing tumour behaviour and for using the
multimodality parameters as predictive values of tumour
response from a patient included in the ARTFIBio project
[34-36].

18F-FDG PET images the glucose consumption of each
region. Tumour cells use glycolysis rather than lipolysis as
the metabolic process to produce ATP and they use more
glucose than normal cells. Glycolysis is a rather inefficient
process and therefore large amounts of glucose are needed
for cell survival and tumour growth. The PET enhancement
(standard uptake value or SUV) in tumours is due to three
different mechanisms: (i) cancer cells produce more ATP out-
side the mitochondria, even in well-oxygenated conditions
(Warburg effect [37]); (ii) cancer cells proliferate more than
normal tissue cells [38], and then they need more glucose;
and, finally, (iii) cancer cells can survive in lower oxygenated
regions better than normal tissue cells [39, 40] but consume
more glucose because they need to produce ATP by glycolysis
in absence of oxygen (Pasteur effect).

DW-MRI measures the diffusion of protons in a medium.
Its principle is based on the attenuation of the signal accord-
ing to Stejskal and Tanner’s model [41]. Tumour cells are
abnormal in size and shape compared to normal cells, and
they are more tightly packed and have higher cellularity than
the tissue from which they originate. The extracellular volume
is smaller in tumour regions, and therefore the freedom of
movements of protons in tumour regions is restricted [42,
43]. The logarithm of the signal attenuation is a function
of the applied gradient, the gap between pulses of gradient,
and the pulse duration. By varying these parameters during
acquisition, the ADC can be calculated for each voxel.

DCE-MRI has been proposed by several authors for treat-
ment monitoring [44-46] and for measurement of oxygena-
tion distribution [19-22]. The main problem is the complexity
of the data analysis and the correspondence between mea-
surement and biological parameters. Another disadvantage is
the necessity of a contrast agent.

In order to characterize the tumour and to implement
new predictive models based on functional imaging data, we
must ensure we can extract as much information as possible
from the available data. Some of the main parameters to char-
acterize tumour behaviour, along with radiotherapy treat-
ment, must be initial tumour density, hypoxia, malignancy/
proliferation, dose to each voxel, and timing of the dose. In
this work, attention is focused on showing the relationship
between ADC maps, DCE-MRI parameters, dose, and 18-
F-FDG PET/CT SUV (standard uptake value). Many other
types of images can show the main parameters we are inter-
ested in modelling (18F-fluorothymidine for proliferation
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[47], Zr-89-cetuximab for response to chemotherapy [31],
and dynamic FDG [28] and fluoromisonidazole (FMISO)
[26] for hypoxia), but it is hypothesized that the proposed
combination of techniques can give us enough information
about the tumour environment to assess the treatment
response, but not the tumour microenvironment (data are
averaged into the voxel size): the ki, parameter in DCE-
MRI is related to vascularization and then to hypoxia [18] and
v, is related to extracellular volume and in heterogeneously
vascularized areas to tumour density [18]; SUV is related
to tumour metabolism and then is related to malignancy
(enhancement of the Warburg effect to the Pasteur effect),
hypoxia (Pasteur effect), and tumour density and prolifera-
tion. Finally, ADC maps are related to water mobility and
then to tumour density [12]. We will explore the relationships
between ADC, DCE-MRI parameters, and SUV values and
will evaluate their influence on tumour response in a case
study where we have in the same slice a necrotic volume,
a hypoxic area, and a heterogeneously vascularized tumour
volume.

2. Material and Methods

2.1. Patients. This study is conducted in accordance with
the Declaration of Helsinki [48] and the study protocol was
approved by the local ethics committee; informed consent
was obtained from all patients.

The aim of ARTFIBio project (http://artfibio.cesga.es/Art-
fibio/application/) is to create a network for sharing infor-
mation and for developing predictive individualized models
of the tumour response to radiotherapy in patients with
head and neck cancer based on in vivo functional data. For
this purpose, several studies of MRI and PET/CT were per-
formed. Patients within the ARTFIBio project [34-36] had
oropharyngeal cancer (squamous cancer cell) of stages T3 and
T4. All of them are treated with IMRT (intensity-modulated
radiation therapy) and the prescribed dose was between
66 Gy and 70 Gy to the local PT'V. The imaging protocol (Fig-
ure 1) is as follows:

(i) pretreatment: MRI study (DCE-MRI + ADC) and
PET/CT study (18F-FDG),

(ii) first control (10-30 Gy): MRI study (DCE-MRI +
ADOQ),

(iii) second control (30 Gy-60 Gy): MRI study (DCE-
MRI + ADC),

(iv) three months after the treatment: PET/CT and MRI
study (DCE-MRI + ADC).

For all imaging studies the patient is positioned using the
RT immobilisation devices. The geometrical distortion on
MRI images and registration process (rigid registration and
deformable registration) were checked with an MRI phan-
tom. Regardless, only central slices showing low distortion
were analysed. For each patient and each set of images the
ADC values, contrast exchange coefficients (Ki,,,,), SUV,
dose, and Hounsfield units (HU) per voxel were recorded of
each volume.
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TABLE 1: Main parameters of MRI acquisition protocols.

TR/TE  Field of view Slice Sense Contrast

Technique 2 Matrix size  thickness ~ Gap
(ms) (cm”) factor agent
(mm)

T1-Turbo Spin Echo 425/4.8 23 %23 272 %272 6 1 1.6 —
T2-Turbo Spin Echo 6171/90 23 x 23 320 x 312 6 1 1.6 —
ADCb = 0, 600 s/mm* 5270/77 25 x 25 120 x 97 6 1 —
ADCb = 0,1000 s/mm” 5926/85 25 %25 120 x 97 6 1 —
DCE-MRI-Dynamic T1 High Resolution Isotropic 41/1.97 24 % 24 120 x 120 6 15 Gd

Volume Excitation (THRIVE)—7 series every 33 s

18F-FDG

DCE-MRI + DW-MRI

DCE-MRI + DW-MRI

- . . -

18F-FDG

DCE-MRI + DW-MRI

Planning PET/CT/MRI Treatment Follow up
Calculated dose
[1.8]3.6]48]5.4]72]7.2]7.2] 9 | | 64.8 [ 66.6]
Recorded dose
[18]3.6[47]5.4]54(5.4[54] 7.1]

FIGURE 1: Scheme of the image acquisition process along the radiotherapy course.

In this paper a case study is highlighted from one patient
who has three clearly differentiated volumes in a single
slice: a heterogeneously vascularized tumour and a hypoxic
region surrounding a necrotic area. This case is very useful
to visualize and investigate the different behaviours of the
tumour volumes in glucose metabolism and in treatment
response.

2.2. Acquisition and Analysis of MR Images. All MRI exami-
nations were performed on a 1.5-T scanner (Achieva; Philips
Healthcare) with the patients in supine position. Routine
T2-weighted, T1, DW-MRI, and DCE-MRI were obtained
using the parameters showed in Table 1. Flex-L coil (Philips
Sense Flex Medium) was placed over the neck. After image
acquisition, pixel-to-pixel ADC map was reconstructed using

the standard software on the imaging console (Achieva; Phil-
ips Healthcare). According to Stejskal and Tanner’s model
[41] and considering the monoexponential approximation,
the ADC value can be calculated using the following:

In(S,/S,)
(b —by)

where S, and S are signal values of the images at b values,
b, and b,, respectively, and ADC is the apparent diffusion
coeflicient obtained using b, = 600 and b, = 0.

A nonlinear model [49] was utilized to convert signal to
gadolinium concentration in DCE-MRI as per Tofts [50]. It
considers two different compartments: the blood plasma (or
intravascular space) and the extracellular extravascular space

ADC = 1
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TABLE 2: Main parameters of the Tofts model.
Quantity Definition
C,(t) Arterial concentration as a function of time
C,(t) Tissue concentration as a function of time
H, Hematocrit volume
Kirans Transfer constant from the blood plasma into the EES
K, Transfer constant from the EES back to the blood plasma
T Onset time of arterial contrast uptake
v Whole blood volume per unit of tissue

Ve

Total EES volume (v, = Ki4ns/Kep)

(EES or interstitial space). The parameters utilized to generate
the Tofts model are described in Table 2.

The relationship between all these parameters can be
obtained by

K Ko
C,(t) = ﬁ (C.ee ™ ) +v,C,1). (2

ct

A voxel-based perfusion analysis method was used based on
the modified Tofts model [49]. A 3D voxel-wise perfusion
analysis method [51, 52] was applied to the DCE-MRI data
which generated perfusion parameters Ky ke, and v,
from the modified Tofts model. This method also provided
semiquantitative metrics such as area under the curve (AUC)
and time to max enhancement.

Variable flip angle (VFA) spoiled gradient recalled echo
scans at three flip angles variations (5°, 10°, and 15°) were uti-
lized to calculate the voxel by voxel T1, of the GTV (gross
tumour volume) of 3 different patients. The average T1, of
these patients (800 ms) was applied when calculating the con-
centration of the analyzed patient which unfortunately did
not have VFA scans themselves.

The arterial input function (AIF) was chosen in the
carotid artery near the base of skull.

2.3. Acquisition of PET/CT Images. Whole-body PET/CT
scan was carried out from head to thigh, 60 min after intra-
venous administration of approximately 370 MBq (+10%) of
18F-FDG on a PET/CT scanner (Discovery, GE Healthcare
Bio-Sciences Corp.) with a 70 cm axial FOV, a 218 x 218
matrix. Study was acquired in 3D mode. The pixel spacing was
5.47 mm with a slice thickness of 3.27 mm. The spatial reso-
lution to 1cm varies from 3.99 mm to 4.56 mm. PET images
were corrected for attenuation, scatter, decay, dead time,
random coincidences, and slice sensitivity.

To calculate the SUV [53] for the selected patient and on a
voxel by voxel basis, we took into account an injected activity
of 345 MBq with a weight of the patient of 49 kg.

2.4. Noise Reduction and Registration. To reduce image noise
a 3 x 3 nearest-neighbour smoothing filter was applied to the
DCE-MRI, PET-CT, and ADC images. Deformable registra-
tion of the images, with the CT of treatment as reference,
was performed using tailored in-house software specifically
developed for the ARTFIBio project [36] and based on ITK
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FIGURE 2: The relationship between SUV and ADC. In the hypoxic
area (excluding necrotic area), high SUV values are obtained
independently of the ADC value; this is explained by the addition
of the Warburg effect and the Pasteur effect. In the heterogeneously
vascularized area, SUV values decrease with ADC. This is likely a
result of the fact that a reduction in ADC implies an increase in
tumour cell density.

libraries [54]. Using the GTV contoured for radiation treat-
ment, the numerical values of each voxel of the coregistered
images were extracted. Bone and air voxels (as determined by
CT) were dropped from the analysis profiles.

3. Results and Discussion

3.1. SUV versus ADC. The relationship between the different
image datasets and functional parameters was investigated
in order to achieve the best possible picture of the internal
tumour dynamics. Using one representative patient a plot of
SUV versus ADC for the CTV is displayed in Figure 2; the
hypoxic area (low ADC, low K,,,,), surrounding necrotic
volume (medium-high ADC, low K,,,,), and heteroge-
neously vascularized tumour (low ADC, high Ki,,,) have
each been considered separately (Figure 2).

rans

3.2. ADC versus v, (DCE-MRI). Several parameters can be
obtained from DCE-MRI, but only the relationships between
Ki,.ns and extracellular volume v, have been investigated here.

In order to perform kinetic modeling of the tumour

robust arterial input function (AIF) needs to be selected.

The AIF was chosen in the carotid artery near the base
of skull for increased reproducibility since a larger variability
was observed in the values of T1, in the carotid at the level of
the neck (Figure 3).

v, should be most closely correlated to ADC information
as the extracellular volume is related to the freedom of water
molecules in the medium. Both sets of data were compared
and they are represented in Figure 4.

For values of v, greater than 0.02 (values less than this
value correspond to badly vascularized areas and low K, in
the studied data), a clear relationship between both datasets
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FIGURE 3: In this axial slice (bottom), k

trans

is represented along (top) a voxel line at different stages of treatment (pretreatment, at 27.72 Gy,

and at 33.38 Gy). We can see how k,,,,,; increases with dose and the central U-shaped valley corresponding to the badly vascularized area is
becoming increasingly narrow. In the upper left figure, we consider AIF from data of the carotid artery near brain, and in the lower left figure,

we consider AIF from data of the carotid artery in neck.

ADC versus v,
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FIGURE 4: v, versus ADC (‘umz/ s) for the selected slice of the patient
of Figure 3. In well-vascularized areas (red dots), a clear relationship
can be found.

is found, indicating that a smaller extracellular volume cor-
responds to a higher tumour cell density in well-vascularized
or heterogeneously vascularized areas but not hypoxic areas.

3.3. SUV, ADC versus k,,,,; (DCE-MRI). Of all the analyzed
parameters, Kk,.. is the most related to vascularization.
Vascularization must be related to oxygenation [55-59], as
Figure 5 shows, because with increasing Ki,,,, values, that
is, increasing perfusion, SUV values decrease because of the
reduction of the Pasteur effect (green dots, Figure 5(c)).

On the other hand, no clear relationship has been found
between ADC map and ki, values, although ADC values
appear to be rather constant (blue dots, Figure 5(d)) because
they are selected from a small homogeneous region. Addi-
tionally, tumour cells are able to survive in badly oxygenated
areas and the tumour cell density is less variable in these areas.

3.4. ADCversus Dose Influenced by K,,,,,. We have generated
the ADC values during the treatment for a heterogeneously
vascularized tumour volume. In this case, the delivered dose
to achieve an ADC value corresponding to normal tissue is
much lower than for badly vascularized voxels. The influence
of vascularization/oxygenation in the ADC response can be
observed with the DCE-MRI studies, as shown in Figure 6.

3.5. Discussion. The results presented have some similarities
to those obtained by Atuegwu et al. [12] and indicate that
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FIGURE 5: In this figure SUV versus K, and ADC versus K., are represented. (a) Ki,,,, map overlaid on the simulation CT. (b) PET/CT.
(c) In the hypoxic area (near necrotic area), high SUV values are obtained independently for all low Ki,,,, values, because of the addition
of the Warburg effect and the Pasteur effect. In the heterogeneously vascularized area, SUV values are decreasing with K,,,,.., as expected,

because the Pasteur effect is reducing in this area as K, ,,; increases. (d) No clear relationship can be found between ADC and K. (¢) ADC

rans*®
map overlaid simulation CT.
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FIGURE 6: ADC values for a heterogeneously vascularized tumour
volume are represented versus delivered dose (fractions 13th and
17th), and the colour represents the k,,,,,; value. In this graph, it can
be observed that heterogeneously vascularized voxels show a greater
increment in ADC values.

ADC values can be a good marker of the tumour response
(11, 12]. Further, the combination of biological information
obtained from different modalities can improve the charac-
terization of tumour behaviour. From our point of view, at
least two different sets of data must be considered: one for
tumour response and another one for hypoxia measurement.
If geometrical distortion is not considered or can be corrected
[60], ADC maps can be a suitable choice for tumour response.
The polarographic electrode has been considered by some
authors as the gold standard for measuring tumour hypoxia
in vivo [61], although theoretical simulations have shown
that it gives only a qualitative characterisation. Considering
only radiopharmaceuticals and PET/CT, the most common
are FMISO [24, 26, 32, 33], dynamic FDG [28], and Cu-
ATSM [47]. When considering MRI, typically BOLD [17]
and DCE-MRI [19, 20, 22, 62] are the most widely used
methods; however we have not found any study using them
for modifying the treatment (as with FMISO [26, 33, 63]).
Vascularity measurements from DCE-MRI data can provide
a surrogate marker of tumour hypoxia, as was shown by
Newbold et al. [20] and Donaldson et al. [21] in head and
neck cancer. These measurements could potentially guide
treatment [22] and are easy to obtain; however more studies
are needed in order to apply to clinical practice, as input data
either for dose painting or for delimiting hypoxic volumes.
18F-FDG shows different aspects of the tumour behav-
iour, mainly associated with tumour cell density, malignancy,
and oxygenation, and the quotient between ADC and SUV
has been proposed as a measurement of malignancy in breast
tumours [64] and in invasive ductal cancer [65]. These last
papers found correlation between maximum SUV and bad
prognoses that could be explained because high SUV can be
associated with hypoxic areas as we have observed.

Using biomechanical models [66] that consider both the
dynamics of the tumour and variation of tumour density
(including diffusion) and oxygenation along the treatment,
instead of static models, can be quite useful for increasing the
predictability of the models.

ADC maps appear to be a good option for evaluating
tumour response; however their disadvantage is image distor-
tion. Unfortunately, this cannot be corrected using standard
deformable registration algorithm, but reversed gradients
method looks like a very promising algorithm to solve this
problem [60]. It is possible that extracellular volume calcu-
lated from DCE-MRI can be used as an equivalent of ADC
values in well-vascularized areas.

4. Conclusions

Multimodality imaging offers much more information about
tumour behaviour than the individual datasets on their own.
The relationship between different types of images must be
studied in detail in order to establish a minimum set of data
required to personalize the radiotherapy treatment and to
optimize the treatment for each patient. This could comprise
not only a gradient of dose along the treatment, but also
different fractionation for each voxel.

Multicentre studies can be useful for recruitment of a
large number of patients and increase the statistical power of
the results, if imaging standards and protocol compliance are
followed [67].

Voxel by voxel analysis seems possible if we consider
small volumes and undistorted regions from ADC maps or
corrected data.
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